Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome

JOURNAL OF PHYSICAL CHEMISTRY B(2022)

引用 2|浏览1
暂无评分
摘要
The ability of phytochromes to act as photoswitches in plants and microorganisms depends on interactions between a bilin-like chromophore and a host protein. The interconversion occurs between the spectrally distinct red (Pr) and far-red (Pfr) conformers. This conformational change is triggered by the photoisomerization of the chromophore D-ring pyrrole. In this study, as a representative example of a phytochrome-bilin system, we consider biliverdin IX alpha (BV) bound to bacteriophytochrome (BphP) from Deinococcus radiodurans. In the absence of light, we use an enhanced sampling molecular dynamics (MD) method to overcome the photoisomerization energy baffler. We find that the calculated free energy (FE) barriers between essential metastable states agree with spectroscopic results. We show that the enhanced dynamics of the BV chromophore in BphP contributes to triggering nanometer-scale conformational movements that propagate by two experimentally determined signal transduction pathways. Most importantly, we describe how the metastable states enable a thermal transition known as the dark reversion between Pfr and Pr, through a previously unknown intermediate state of Pfr. We present the heterogeneity of temperature-dependent Pfr states at the atomistic leveL This work paves a way toward understanding the complete mechanism of the photoisomerization of a bilin-like chromophore in phytochromes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要