Common endosymbionts affect host fitness and sex allocation via egg size provisioning

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES(2022)

Cited 6|Views4
No score
Abstract
It is hard to overemphasize the importance of endosymbionts in arthropod biology, ecology and evolution. Some endosymbionts can complement host metabolic function or provide defence against pathogens; others, such as ubiquitous Wolbachia and Cardinium, have evolved strategies to manipulate host reproduction. A common reproductive manipulation strategy is cytoplasmic incompatibility (CI) between differently infected individuals which can result in female mortality or male development of fertilized eggs in haplodiploid hosts. Recently, an additional role of endosymbionts has been recognized in the modification of sex allocation in sexually reproducing haplodiploids. This was theoretically expected due to the maternal inheritance of endosymbionts and natural selection for them to increase infected female production, yet the underlying mechanism remained unknown. Here, we tested whether and how Cardinium and Wolbachia causing different CI types interact to increase female production in a haplodiploid thrips species where sex allocation depends on both maternal condition and egg size provisioning. We found that Cardinium augmented female production by increasing maternal fitness and egg size, thereby boosting fertilization rate and offspring fitness. Wolbachia, in contrast, reduced the beneficial effects of Cardinium. Our results demonstrate different invasion strategies and antagonistic effects of endosymbiotic bacteria on host fitness and evolution of sex allocation.
More
Translated text
Key words
Cardinium, Wolbachia, sex ratio distortion, fertilization rate, egg size, cytoplasmic incompatibility
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined