Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) diagnosis based on a blood test.

Analytica chimica acta(2022)

引用 9|浏览18
暂无评分
摘要
The precise in vitro diagnosis requires a high selectivity and sensitivity for a diagnostic agent. In this respect, fluorescent diagnostic probes have attracted attention in various clinical fields. Herein, we disclosed a tailor-made fluorescent homocysteine probe (NPO-Pyr) based on pyridine-thiol coordination and amine-addition. To date, Hcy has been recognized as an excellent biomarker for various diseases, but there still remain some limitations in detecting of Hcy due to its structural similarity to Cys. In this study, we developed a new fluorescent diagnostic probe for monitoring Hcy by incorporating 4-hydroxy-pyridine moiety into the skeleton of the NBD fluorophore. The incorporated pyridine moiety could coordinate with the thiol group at Hcy, followed by the amine-addition reaction (12 kJ/mol). Based on this rationale, NPO-Pyr responded to Hcy and exhibited turn-on properties with high selectivity and sensitivity (LOD: 0.084 ppm), and a fast-response time (<5 min). Furthermore, NPO-Pyr could predict the formation of glioblastoma (GBM) at an early stage through sensing Hcy in blood plasma (vs. healthy group, ∗∗∗∗P < 0.0001). Our findings have a significant importance across various fields from basic science to clinical translation, and we strongly believe that NPO-Pyr has the potential to fully replace the current complex GBM diagnostic process as a simpler in vitro agent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要