Diagnostic Accuracy of Magnetic Resonance Spectroscopy in Predicting the Grade of Glioma Keeping Histopathology as the Gold Standard

CUREUS JOURNAL OF MEDICAL SCIENCE(2022)

引用 2|浏览0
暂无评分
摘要
Background Gliomas are the most prevalent intrinsic tumors of the central nervous system and are categorized from grade I to grade IV. Magnetic resonance imaging (MRI) provides exact diagnosis, prognosis, and assessment of tumor response to current chemotherapy/immunotherapy and radiation therapy. With histopathology serving as the gold standard, we aimed to assess the diagnostic accuracy of magnetic resonance spectroscopy (MRS) in predicting glioma grade. Methodology This cross-sectional study was conducted in the Department of Radiology, KRL Hospital, Islamabad, from December 15, 2019, to September 30, 2021. After providing written consent, 80 patients with untreated gliomas were included in this study. The voxel of interest was identified using MRI brain conventional contrast-enhanced sequences to assess the grade of the gliomas and link it to the histology report. Following this identification, tissue metabolites were calculated using MRS. Results The patients' age ranged from 13 to 80 years, with a mean age of 49.5 years. Male patients comprised 57.5% of the total study population, while female patients comprised 42.5%. Overall, 23.75% of patients had lowgrade tumors, while 76.25% had high-grade tumors. Low-grade tumors had a choline (Cho)/creatine (Cr) metabolite ratio of 1.7421, whereas high-grade tumors had an average Cho/Cr metabolite ratio of 2.5575. N acetyl aspartate (NAA)/Cr ratio was 1.6368 in low grade and 0.6734 in high-grade tumors. Sensitivity of 77% and specificity of 84.2% were noted, with 78.75% diagnostic accuracy for the Cho/Cr ratio. Conclusions Multivoxel MRS has been shown to reliably predict the grade of gliomas despite its non-invasive nature and lack of procedural challenges. When used together Cho/Cr and NAA/Cr ratios and histopathology can accurately determine tumor grade and can be used as a supplementary non-invasive technique.
更多
查看译文
关键词
sensitivity, specificity, magnetic resonance imaging, glioma, diagnostic accuracy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要