Neural programming of seasonal physiology in birds and mammals: A modular perspective

Hormones and Behavior(2022)

Cited 10|Views4
No score
Abstract
Most animals in the temperate zone exhibit robust seasonal rhythms in neuroendocrine, physiological and behavioral processes. The integration of predictive and supplementary environmental cues (e.g., nutrients) involves a series of discrete, and interconnected brain regions that span hypothalamic, thalamic, mesencephalic, and limbic regions. Species-specific adaptive changes in these neuroendocrine structures and cellular plasticity have likely evolved to support seasonal life-history transitions. Despite significant advances in our understanding of ecological responses to predictive and supplementary environmental cues, there remains a paucity of literature on how these diverse cues impact the underlying neural and cellular substrates. To date, most scientific approach has focused on neuroendocrine responses to annual changes in daylength, referred to as photoperiod, due to the robust physiological changes to light manipulations in laboratory settings. In this review, we highlight the relatively few animal models that have been effectively used to investigate how predictive day lengths, and supplementary cues are integrated across hypothalamic nuclei, and discuss key findings of how seasonal rhythms in physiology are governed by adaptive neuroendocrine changes. We discuss how specific brain regions integrate environmental cues to form a complex multiunit or ‘modular’ system that has evolved to optimize the timing of seasonal physiology. Overall, the review aims to highlight the existence of a modular network of neural regions that independently contribute to timing seasonal physiology. This paper proposes that a multi-modular neuroendocrine system has evolved in which independent neural ‘units’ operate to support species-specific seasonal rhythms.
More
Translated text
Key words
Hypothalamus,Thalamus,Midbrain,Reproduction,Energy balance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined