Noninvasive spinal neuromodulation mitigates symptoms of idiopathic overactive bladder

Bioelectronic Medicine(2022)

引用 1|浏览12
暂无评分
摘要
Background Overactive bladder (OAB) affects 12 to 30% of the world’s population. The accompanying urinary urgency, frequency and incontinence can have a profound effect on quality of life, leading to depression, social isolation, avoidance of sexual activity and loss of productivity. Conservative measures such as lifestyle modification and pelvic floor physical therapy are the first line of treatment for overactive bladder. Patients who fail these may go on to take medications, undergo neuromodulation or receive injection of botulinum toxin into the bladder wall. While effective, medications have side effects and suffer from poor adherence. Neuromodulation and botulinum toxin injection are also effective but are invasive and not acceptable to some patients. Methods We have developed a novel transcutaneous spinal cord neuromodulator (SCONE™ , ) that delivers multifrequency electrical stimulation to the spinal cord without the need for insertion or implantation of stimulating electrodes. Previously, multifrequency transcutaneous stimulation has been demonstrated to penetrate to the spinal cord and lead to motor activation of detrusor and external urethral sphincter muscles. Here, we report on eight patients with idiopathic overactive bladder, who underwent 12 weeks of SCONE™ therapy. Results All patients reported statistically significant clinical improvement in multiple symptoms of overactive bladder, such as urinary urgency, frequency and urge incontinence. In addition, patients reported significant symptomatic improvements as captured by validated clinical surveys. Conclusion SCONE™ therapy represents the first of its kind therapy to treat symptoms of urgency, frequency and urge urinary incontinence in patients with OAB. Trial registration The study was listed on clinicaltrials.gov ( NCT03753750 ).
更多
查看译文
关键词
Non-invasive spinal cord stimulation, Urge urinary incontinence, Overactive bladder, Lower urinary tract, Urodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要