Evaluation of canine detection of COVID-19 infected individuals under controlled settings

TRANSBOUNDARY AND EMERGING DISEASES(2022)

引用 11|浏览5
暂无评分
摘要
Reverse transcription polymerase chain reaction (RT-PCR) is currently the standard diagnostic method to detect symptomatic and asymptomatic individuals infected with Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, RT-PCR results are not immediate and may falsely be negative before an infected individual sheds viral particles in the upper airways where swabs are collected. Infected individuals emit volatile organic compounds in their breath and sweat that are detectable by trained dogs. Here, we evaluate the diagnostic accuracy of dog detection against SARS-CoV-2 infection. Fifteen dogs previously trained at two centres in Australia were presented to axillary sweat specimens collected from known SARS-CoV-2 human cases (n = 100) and non-cases (n = 414). The true infection status of the cases and non-cases were confirmed based on RT-PCR results as well as clinical presentation. Across dogs, the overall diagnostic sensitivity (DSe) was 95.3% (95%CI: 93.1-97.6%) and diagnostic specificity (DSp) was 97.1% (95%CI: 90.7-100.0%). The DSp decreased significantly when non-case specimens were collected over 1 min rather than 20 min (p value = .004). The location of evaluation did not impact the detection performances. The accuracy of detection varied across dogs and experienced dogs revealed a marginally better DSp (p value = .016). The potential and limitations of this alternative detection tool are discussed.
更多
查看译文
关键词
COVID-19, detection dogs, diagnostic accuracy, diagnostic sensitivity, diagnostic specificity, SARS-Co-2 canine detection, screening tool
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要