Npa3-Gpn3 cooperate to assemble RNA polymerase II and prevent clump of its subunits in the cytoplasm.

International journal of biological macromolecules(2022)

引用 3|浏览3
暂无评分
摘要
RNA polymerase II (RNAPII) is an essential machinery in eukaryotes that catalyzes mRNA synthesis and controls cell fate. Although the structure and function of RNAPII are relatively well defined, the molecular mechanism of its assembly process is poorly understood. Three members of GPN-loop GTPase family Npa3/Gpn1, Gpn2, and Gpn3 participate in the biogenesis of RNAPII with non-redundant roles. In this study, we demonstrate that Gpn3 and Npa3 directly participate in the assembly of the two largest subunits during biogenesis of RNAPII. When Gpn3 is defective, assembly of RNAPII is disrupted, leading to cytoplasmic foci of RNAPII subunits. Long-term assembly factor defects will lead to the accumulation of different kind of newly synthesized RNAPII subunits in the cytoplasm to form foci, and this can be prevented by recovery of the defective assembly factor. Cytoplasmic foci of RNAPII subunits in mutants of these assembly factors reveals a new cellular rescue response named the 'RNAPII assembly stress response'.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要