Improving the stability of frequency-dependent squeezing with bichromatic control of filter cavity length, alignment, and incident beam pointing

PHYSICAL REVIEW D(2022)

引用 2|浏览11
暂无评分
摘要
Frequency-dependent squeezing is the main upgrade for achieving broadband quantum noise reduction in upcoming observation runs of gravitational wave detectors. The proper frequency dependence of the squeezed quadrature is obtained by reflecting squeezed vacuum from a Fabry-Perot filter cavity detuned by half of its line width. However, since the squeezed vacuum contains no classical amplitude, copropagating auxiliary control beams are required to achieve the filter cavity???s length, alignment, and incident beam pointing stability. In our frequency-dependent squeezing experiment at the National Astronomical Observatory of Japan, we used a control beam at a harmonic of squeezed vacuum wavelength and found visible detuning variation related to the suspended mirrors angular drift. These variations can degrade interferometer quantum noise reduction. We investigated various mechanisms that can cause the filter cavity detuning variation. The detuning drift is found to be mitigated sufficiently by fixing the incident beam pointing and applying filter cavity automatic alignment. It was also found that there is an optimal position of the beam on the filter cavity mirror that helps to reduce the detuning fluctuations. Here, we report a stabilized filter cavity detuning variation of less than 10 Hz compared to the 113 Hz cavity line width. Compared to previously published results [Phys. Rev. Lett. 124, 171101 (2020), such detuning stability would be sufficient to make filter cavity detuning drift induced gravitational wave detector detection range fluctuation reduce from 11% to within 2%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要