Tuning the size, concaveness, and aspect ratio of concave cubic gold nanoparticles produced with high reproducibility

Materials Today Chemistry(2022)

引用 3|浏览6
暂无评分
摘要
Reproducible fabrication of concave cubic gold nanoparticles with precise control over size, concaveness, and aspect ratio is important because the nanoscale structural characteristics can influence their plasmonic and catalytic properties. However, this is particularly challenging because the number of synthetic parameters involved in the fabrication strategy adds complexity to the reaction mechanism. Here, we introduce a simplified seed-mediated method and uncover the unknown conceptual insights on how the different halides and their concentration influence the surface structure and stability of underpotential silver monolayer deposited on the high energy facets of nanoparticles. The results reveal that adding Br− and I− ions to growth solution offers a predominant way to control the reaction kinetics and engineering nanoparticles with a predefined size, morphology, concaveness, aspect ratio, and plasmonic properties. Using spectroscopy and microscopy techniques, we shed new light on the reaction kinetics of concave cubic gold nanoparticles using the combined influence of silver underpotential deposition and halides. The strategy developed here can be expanded to fabricate gold nanoparticles of complex geometries. The results from our electromagnetic calculations suggest that the self-assembled superstructure of concave cubic gold nanoparticles can be more appealing for developing an ultra-sensitive sensing platform than to self-assembled superstructures of truncated cubic gold nanoparticles.
更多
查看译文
关键词
Seed-mediated,Concavity control,Localized surface plasmon resonance,Self-assembly,High indexed-facets,Anisotropic nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要