Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fragmentation and Entanglement Limit Vimentin Intermediate Filament Assembly

Physical Review X(2023)

Cited 0|Views20
No score
Abstract
Networks of intermediate filaments (IFs) need to constantly reorganize to fulfil their functions at different locations within the cell. The mechanism of IF assembly is well described and involves filament end-to-end annealing. By contrast, the mechanisms involved in IF disassembly are far less understood. In vitro, IFs are assumed to be very stable and their disassembly negligible. IF fragmentation has been observed in many cell types, but it has been suggested to be associated with active processes such as IF post-translational modifications. In this article, we uncover the contribution of filament spontaneous fragmentation in the assembly dynamics of type III vimentin IF using a combination of in vitro reconstitution probed by fluorescence imaging and theoretical modeling. We first show that vimentin assembly at low concentrations results in an equilibrium between filament annealing and fragmentation at times >= 24 h. At higher concentrations, entanglements kinetically trap the system out of equilibrium, and we show that this trapping is reversible upon dilution. Taking into account both fragmentation and entanglement, we estimate that the mean bond breaking time is similar to 18 h. This translates into a mean breaking time of similar to 5 h for a 1-mu m-long filament, which is a relevant timescale for IF reorganization in live cells. Finally, we provide direct evidence through dual-color imaging that filament fragmentation and annealing coexist during assembly. By showing that IF fragmentation can occur without cofactors or post -translational modifications, our study provides new insights into the physical understanding of the IF length regulation.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined