Biomimetic development of chitosan and sodium alginate-based nanocomposites contains zirconia for tissue engineering applications

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS(2022)

引用 2|浏览6
暂无评分
摘要
Nanostructured materials possess unique structural and functional properties that play a crucial position in tissue engineering applications. Present investigation is aimed to synthesize chitosan-sodium alginate (CS) nanocomposite using hydrothermally prepared zirconia nanoparticles. In this, three different weight percentages of (0.5, 1, and 1.5) zirconia nanoparticles are utilized for the preparation of biomimetic nanocomposite scaffolds (CSZ) employing 4 wt% of CS by a solvent casting technique. Physico-chemical and thermal behavior of the prepared nanoparticles and their CSZ scaffolds are comprehensively characterized. Bioactivity of the prepared zirconia nanoparticles and CSZ scaffolds are explored in terms of in vitro biocompatibility, protein absorption in simulated body fluid (SBF), and phosphate buffered saline (PBS). Agar disc diffusion method is employed to identify the antibacterial property against Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity of zirconia nanoparticles and CSZ scaffolds is identified against human urothelial carcinoma (UC6) and osteosarcoma (MG-63) cells. These studies explore that zirconia nanoparticles are suitable for biomedical applications while it is interacted with chitosan and sodium alginate (CS) due to their promising biocompatibility. Biomimetically obtained chitosan/sodium alginate scaffold contain 1 wt% zirconia nanoparticles show higher biocompatibility amenable for tissue engineering applications.
更多
查看译文
关键词
biocompatibility, biomaterials, nano zirconia, polymeric composite, tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要