Preparing hierarchical porous carbon with well-developed microporosity using alkali metal-catalyzed hydrothermal carbonization for VOCs adsorption.

Chemosphere(2022)

引用 21|浏览13
暂无评分
摘要
Biomass-derived porous carbonaceous materials are efficient adsorbents for VOCs, but their traditional preparation method, pyrolysis combined with activation, suffers from high energy consumption, equipment corrosion, and low pore-making efficiency, which hinders their large-scale practical application. A novel method of alkali metal-catalyzed hydrothermal carbonization coupling with chemical activation for the preparation of microporous carbon is presented. Porous carbon with well-developed microporosity deriving from corn husk were prepared through the hydrothermal carbonization using potassium persulfate (K2S2O8) as a catalyst and programmed heating activation process. And the products were applied to removal of typical oxygen-containing VOCs, ethyl acetate. The addition of K2S2O8 in hydrothermal carbonization accelerated the biomass hydrolysis, decomposed the biopolymer, and formed functional hydrochars. Potassium salts introduced into the hydrochars, which acted as an activator in this programmed heating activation process, formed a great deal of micropores. The specific surface area of micropores increased by 81%, and the specific surface area of micropores less than 1 nm increased by 180%. The introduction of K2S2O8 in preparation improved the adsorption performance of CH-based porous carbons 16.46% and 60.00% respectively at different preparation temperatures (600 °C and 800 °C). Basing on these results, the improvement of micropores less than 1 nm is directly related to the adsorption performance. This indicates that pores (<1 nm) respond well to the adsorption of ethyl acetate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要