Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver

PHYSICAL REVIEW LETTERS(2022)

引用 4|浏览30
暂无评分
摘要
The recognition of entanglement states is a notoriously difficult problem when no prior information is available. Here, we propose an efficient quantum adversarial bipartite entanglement detection scheme to address this issue. Our proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits, where a two-outcome measurement can be used to query a classical binary result about whether the input state is bipartite entangled or not. In principle, for an N-qubit quantum state, the runtime complexity of our proposal is O(poly(N)T) with T being the number of iterations. We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states. Our work paves the way for using near-term quantum machines to tackle entanglement detection on multipartite entangled quantum systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要