High-Performance Liquid Chromatography-Tandem Mass Spectrometry Analysis of Carbonyl Emissions from E-Cigarette, or Vaping, Products

ACS OMEGA(2022)

引用 3|浏览13
暂无评分
摘要
A quantitative method was developed to measure four harmful carbonyls (acetaldehyde, acrolein, crotonaldehyde, and formaldehyde) in aerosol generated from e-cigarette, or vaping, products (EVPs). The method uses a commercially available sorbent bed treated with a derivatization solution to trap and stabilize reactive carbonyls in aerosol emissions from EVPs to reduce reactive analyte losses and improve quantification. Analytes were extracted from the sorbent material using acetonitrile and analyzed via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The method was applied to aerosols generated from products obtained from case patients with EVP use-associated lung injury (EVALI). The method accuracy ranged from 93.6 to 105% in the solvent and 99.0 to 112% in the matrix. Limits of detection (LODs) were in the low nanogram range at 0.735-2.10 ng for all analytes, except formaldehyde at 14.7 ng. Intermediate precision, as determined from the replicate measurements of quality-control (QC) samples, showed a relative standard deviation (RSD) of less than 20% for all analytes. The EVALI case-related products delivered aerosol containing the following ranges of carbonyls: acetaldehyde (0.0856-5.59 mu g), acrolein (0.00646-1.05 mu g), crotonaldehyde (0.00168-0.108 mu g), and formaldehyde (0.0533-12.6 mu g). At least one carbonyl analyte was detected in every product. Carbonyl deliveries from EVALI-associated products of all types are consistent with the previously published results for e-cigarettes, and levels are lower than those observed in smoke from combustible cigarettes. This method is rugged, has high throughput, and is well suited for quantifying four harmful carbonyls in aerosol emissions produced by a broad spectrum of devices/solvents, ranging from e-cigarette containing polar solvents to vaping products containing nonpolar solvents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要