Reorganization of F-actin nanostructures is required for the late phases of SARS-CoV-2 replication in pulmonary cells

biorxiv(2022)

引用 3|浏览6
暂无评分
摘要
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is worldwide the main cause of the COVID-19 pandemic. After infection of human pulmonary cells, intracellular viral replication take place in different cellular compartments resulting in the destruction of the host cells and causing severe respiratory diseases. Although cellular trafficking of SARS-CoV-2 have been explored, little is known about the role of the cytoskeleton during viral replication in pulmonary cells. Here we show that SARS-CoV-2 infection induces dramatic changes of F-actin nanostructures overtime. Ring-like actin nanostructures are surrounding viral intracellular organelles, suggesting a functional interplay between F-actin and viral M clusters during particle assembly. Filopodia-like structures loaded with viruses to neighbour cells suggest these structures as mechanism for cell-to-cell virus transmission. Strikingly, gene expression profile analysis and PKN inhibitor treatments of infected pulmonary cells reveal a major role of alpha-actinins superfamily proteins in SARS-CoV-2 replication. Overall, our results highlight cell actors required for SARS-CoV2 replication that are promises for antiviral targets. Teaser Impairing regulation of actin filaments inhibits SARS-CoV-2 particle production in human pulmonary cells.
更多
查看译文
关键词
pulmonary cells,f-actin,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要