Correction to: Hypoxia modulation by dual-drug nanoparticles for enhanced synergistic sonodynamic and starvation therapy

Journal of Nanobiotechnology(2021)

引用 4|浏览2
暂无评分
摘要
Sonodynamic therapy (SDT) is an emerging non-invasive therapeutic technique. SDT-based cancer therapy strategies are presently underway, and it may be perceived as a promising approach to improve the efficiency of anti-cancer treatment. In this work, multifunctional theranostic nanoparticles (NPs) were synthesized for synergistic starvation therapy and SDT by loading glucose oxidase (GOx, termed G) and 5,10,15,20-tetrakis (4-chlorophenyl) porphyrin) Cl (T (p-Cl) PPMnCl, termed PMnC) in Poly (lactic-co-glycolic) acid (PLGA) NPs (designated as MG@P NPs). On account of the peroxidase-like activity of PMnC, MG@P NPs can catalyze hydrogen peroxide (H2O2) in tumor regions to produce oxygen (O2), thus enhancing synergistic therapeutic effects by accelerating the decomposition of glucose and promoting the production of cytotoxic singlet oxygen (1O2) induced by ultrasound (US) irradiation. Furthermore, the NPs can also serve as excellent photoacoustic (PA)/magnetic resonance (MR) imaging contrast agents, effectuating imaging-guided cancer treatment. Multifunctional MG@P NPs can effectuate the synergistic amplification effect of cancer starvation therapy and SDT by hypoxia modulation, and act as contrast agents to enhance MR/PA dual-modal imaging. Consequently, MG@P NPs might be a promising nano-platform for highly efficient cancer theranostics.
更多
查看译文
关键词
Hypoxia, Sonodynamic therapy, Starvation therapy, Dual-modal imaging, Nanomedicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要