A fully-customized dataflow engine for 3D earthquake simulation with a complex topography

Science China Information Sciences(2021)

引用 1|浏览3
暂无评分
摘要
With HPC (high performance computing) evolving into the exascale era, improvements in computing performance and power efficiency have become increasingly more important. Based on our previous work on enabling earthquake simulations on a large scale on Sunway TaihuLight, we further explore other possibilities to improve the application through a fully-customized hardware design on reconfigurable FPGA (field programmable gate array) devices. We investigate the feasibility and the potential benefits of a complete fixed-point design. We first perform a coarse-resolution-based simulation to analyze the representation range and precision needed to capture both the total energy and the energy distribution of variables over space and time. We then derive a complete fixed-point design that identifies the suitable bitwidth for major categories of variables and dynamically represents the range through a dynamic scaling scheme. Finally, we use the optimized fixed-point design to run a case of the Wenchuan earthquake to demonstrate the potential of supporting large-scale scientific simulations on FPGA devices. The results demonstrate that an 18-bit fixed-point design already provides an almost identical description of the seismic events in the Wenchuan scenario down to a single-precision floating-point version and provides sustainable performance equivalent to 13.1 Intel Xeon Gold 6154 18-core CPUs or 2.10 Sunway 260-core processors, with performance per watt (power efficiency) improved by 15.3 and 3.72 times compared with the Intel Xeon Gold 6154 18-core CPUs and the Sunway 260-core processors, respectively.
更多
查看译文
关键词
reconfigurable computing,earthquake simulation,FPGA,hardware-software co-design,architecture exploration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要