Chrome Extension
WeChat Mini Program
Use on ChatGLM

Prediction of Metabolic Disorders Using NMR-Based Metabolomics: The Shanghai Changfeng Study

Phenomics(2021)

Cited 6|Views7
No score
Abstract
A metabolically healthy status, whether obese or not, is a transient stage with the potential to develop into metabolic disorders during the course of life. We investigated the incidence of metabolic disorders in 1078 metabolically healthy Chinese adults from the Shanghai Changfeng Study and looked for metabolites that discriminated the participants who would develop metabolic disorders in the future. Participants were divided into metabolically healthy overweight/obesity (MHO) and metabolically healthy normal weight (MHNW) groups according to their body mass index (BMI) and metabolic status. Their serum metabolomic profile was measured using a 1 H nuclear magnetic resonance spectrometer ( 1 H-NMR). The prevalence of diabetes, hypertriglyceridemia, hypercholesterolemia and metabolic syndrome was similar between the MHNW and MHO participants at baseline. After a median of 4.2 years of follow-up, more MHO participants became metabolically unhealthy than MHNW participants. However, a subgroup of MHO participants who remained metabolically healthy (MHO → MHO) had a similar prevalence of metabolic disorders as the MHNW participants at the follow-up examination, despite a significant reduction in their serum concentrations of high-density lipoprotein (HDL) and an elevation in valine, leucine, alanine and tyrosine. Further correlation analysis indicated that serum intermediate-density lipoprotein (IDL) and very low-density lipoprotein cholesterol (VLDL-CH) might be involved in the transition from metabolically healthy to unhealthy status and could be valuable to identify the MHNW and MHO with increased metabolic risks.
More
Translated text
Key words
1 H nuclear magnetic resonance spectrometer ( 1 H-NMR)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined