Performances and calibrations of new disruptive UVC β-Ga2O3 sensors for new space applications

Oxide-based Materials and Devices XIII(2022)

引用 0|浏览12
暂无评分
摘要
We present measurement protocols of performances, test and calibrations of new compact solid-state photodetectors based on β-Ga2O3 oxides, and optimized for the UVC. They present reduced dark currents, permitting room temperature operation suppressing need for a cooling system (mass and power savings) and avoiding cold surfaces that traps environmental contamination. Detectors' response peak around 215-220 nm with a bandpass of 30 nm, allowing to observe the UVC wavelength band responsible of ozone creation in the stratosphere (Herzberg continuum, 200-242 nm) and to achieve solar-blindness for wavelengths above 250 nm. Other key assets of β-Ga2O3 detectors are their radiation hard properties (longer lifetime), and possible sensitivity (several hundreds mA/W at -5 V) that allows operation at lower voltages (reduced power), a key asset for Space applications. These detectors, evaluated, tested and calibrated, will be integrated on the INSPIRE-7 nanosatellite to be launched in 2023.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要