Ruthenium-induced corneal collagen crosslinking under visible light

Acta Biomaterialia(2022)

Cited 5|Views16
No score
Abstract
Corneal collagen crosslinking (CXL) is a commonly used minimally invasive surgical technique to prevent the progression of corneal ectasias, such as keratoconus. Unfortunately, riboflavin/UV-A light-based CXL procedures have not been successfully applied to all patients, and result in frequent complications, such as corneal haze and endothelial damage. We propose a new method for corneal crosslinking by using a Ruthenium (Ru) based water-soluble photoinitiator and visible light (430 nm). Tris(bipyridine)ruthenium(II) ([Ru(bpy)3]2+) and sodium persulfate (SPS) mixture covalently crosslinks free tyrosine, histidine, and lysine groups under visible light (400–450 nm), which prevents UV-A light-induced cytotoxicity in an efficient and time saving collagen crosslinking procedure. In this study, we investigated the effects of the Ru/visible blue light procedure on the viability and toxicity of human corneal epithelium, limbal, and stromal cells. Then bovine corneas crosslinked with ruthenium mixture and visible light were characterized, and their biomechanical properties were compared with the customized riboflavin/UV-A crosslinking approach in the clinics. Crosslinked corneas with a ruthenium-based CXL approach showed significantly higher young's modulus compared to riboflavin/UV-A light-based method applied to corneas. In addition, crosslinked corneas with both methods were characterized to evaluate the hydrodynamic behavior, optical transparency, and enzymatic resistance. In all biomechanical, biochemical, and optical tests used here, corneas that were crosslinked with ruthenium-based approach demonstrated better results than that of corneas crosslinked with riboflavin/ UV-A. This study is promising to be translated into a non-surgical therapy for all ectatic corneal pathologies as a result of mild conditions introduced here with visible light exposure and a nontoxic ruthenium-based photoinitiator to the cornea.
More
Translated text
Key words
Cornea,Collagen,Crosslinking,Riboflavin,Ruthenium,Keratoconus,Phototherapy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined