Chrome Extension
WeChat Mini Program
Use on ChatGLM

Hybrid films from plant and bacterial nanocellulose: mechanical and barrier properties

Nordic Pulp & Paper Research Journal(2022)

Cited 7|Views4
No score
Abstract
Abstract The accumulation of petroleum polymers compromises biodiversity and causes environmental problems. Nanocellulose enhances biodegradability and can improve the physical-mechanical performance of materials. The objective was to produce and characterize hybrid films composed of bacterial cellulose (BC) and plant nanocellulose from Eucalyptus (Euc) or Pinus (Pin). Films were produced by the casting method using filmogenic suspensions with different cellulose nanofibrils (CNFs) proportions from both the sources (0, 25, 50, 75 and 100 %). CNFs suspensions were characterized by transmission electron microscopy. The morphology of the films was analyzed using scanning electron microscopy. In addition, the transparency, contact angle, wettability, oil and water vapor barrier and mechanical properties were also evaluated. The contact angles were smaller for films with BC and the wettability was greater when comparing BC with plant CNFs (0.10 ° s − 1 {\text{s}^{-1}} for 75 % Euc/25 % BC and 0.20 ° s − 1 {\text{s}^{-1}} for 25 % Euc/75 % BC). The water vapor permeability (WVP) of the 100 % BC films and the 25 % Euc/75 % BC composition were the highest among the studied compositions. Tensile strength, Young’s modulus and puncture strength decreased considerably with the addition of BC in the films. More studies regarding pre-treatments to purify BC are needed to improve the mechanical properties of the films.
More
Translated text
Key words
bacterial nanocellulose,hybrid films,barrier properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined