Rippling Effect on the Electrical Properties of Boron Nitride Monolayer: Density Functional Theory

Semiconductors(2022)

引用 5|浏览3
暂无评分
摘要
We performed a systematic study on mechanical properties of boron nitride monolayer. We found that applying mechanical deformation on boron nitride monolayer induced pattern of ripples. The induced rippling in the boron nitride monolayer created different bending levels in the forbidden zone, which in turn significantly tune the electronic properties of the monolayer. We also found that the band gap of boron nitride monolayer decreased dramatically with increasing the bending angles. In other words, the combined effect of applying bending and uniaxial stress on the boron nitride monolayer significantly decreases the band gap. We believe that the ability to precisely control sharp local curvatures of boron nitride sheet brings forward opportunities for strain-assisted modification of chemical reactivity and local electronic structure in the boron nitride monolayer. Such modification may be of great interest to band gap engineered devices.
更多
查看译文
关键词
boron nitride monolayer,uniaxial stress,rippling,electrical properties,density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要