Chrome Extension
WeChat Mini Program
Use on ChatGLM

Covalent Organic Framework (COF) Derived Ni‐N‐C Catalysts for Electrochemical CO 2 Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites

Angewandte Chemie International Edition(2022)

Cited 0|Views6
No score
Abstract
Electrochemical CO2 reduction is a potential approach to convert CO2 into valuable chemicals using electricity as feedstock. Abundant and affordable catalyst materials are needed to upscale this process in a sustainable manner. Nickel-nitrogen-doped carbon (Ni-N-C) is an efficient catalyst for CO2 reduction to CO, and the single-site Ni-Nx motif is believed to be the active site. However, critical metrics for its catalytic activity, such as active site density and intrinsic turnover frequency, so far lack systematic discussion. In this work, we prepared a set of covalent organic framework (COF)-derived Ni-N-C catalysts, for which the Ni-Nx content could be adjusted by the pyrolysis temperature. The combination of high-angle annular dark-field scanning transmission electron microscopy and extended X-ray absorption fine structure evidenced the presence of Ni single-sites, and quantitative X-ray photoemission addressed the relation between active site density and turnover frequency.
More
Translated text
Key words
electrochemical covalent,covalent organic framework,catalysts,cof
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined