Functional building devices using laser-induced selective metallization on magnesium oxychloride cement composites

CEMENT & CONCRETE COMPOSITES(2022)

引用 5|浏览1
暂无评分
摘要
Magnesium oxychloride (MOC) cement as viable substrate candidate has unique applications in a range of functional and novel sensing applications due to their low thermal conductivity, high toughness, durability and excellent fire resistance. Here, we developed a facile strategy to fabricate metallized patterns on MOC cement composites through laser-induced selective metallization. The laser sensitiser of copper hydroxyl phosphate [Cu-2(OH)PO4] was incorporated into MOC cement to prepare MOC cement composites. Then, the metallized copper patterns were obtained on MOC cement composites after 1064 nm pulsed laser activation and electroless copper plating (ECP). The obtained copper layer on MOC cement composites exhibited high electrical conductivity and excellent mechanical adhesion to the substrate. Furthermore, the rough copper patterns exhibited selfcleaning ability after superhydrophobic modification, which could prevent the surface from being contaminated. The metallized copper pattern could rapidly heat up when energised due to the Joule heating effect, and it can be applied for electric heating and automatic deicing in winter. In addition, a UV photodetector was fabricated by designing an interdigital metallized pattern combined with the UV light response characteristics of nano-ZnO, which has potential application on intelligent functional devices.
更多
查看译文
关键词
Magnesium oxychloride cement,Copper hydroxyl phosphate,Laser activation,Selective metallization,Superhydrophobic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要