Baicalin Attenuates Oxidative Stress in a Tissue-Engineered Liver Model of NAFLD by Scavenging Reactive Oxygen Species

NUTRIENTS(2022)

引用 14|浏览17
暂无评分
摘要
Oxidative stress plays an important role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Baicalin has been shown to exert protective effects in various liver diseases. The mechanism of baicalin's antioxidative effect in NAFLD is currently unclear. The aim of this study was to investigate the effects and mechanisms of baicalin on oxidative stress in a new tissue-engineered liver model of NAFLD. The 3D model of NAFLD was induced by a fat-supplemented medium (fatty acids, FFA group) for 8 days and baicalin was administered on the 5th day. CCK-8 assay showed that baicalin at concentrations below 100 mu M had no obvious cytotoxicity. Baicalin inhibited apoptosis and lactate dehydrogenase release in the FFA group. Baicalin reduced the levels of reactive oxygen species and malondialdehyde induced by FFA, and increased superoxide dismutase and glutathione amounts. However, it did not upregulate nuclear erythroid 2-related factor 2 compared with the FFA group. Mitochondrial morphology was partially restored after baicalin treatment, and ATP5A expression and mitochondrial membrane potential were increased. The superoxide anion scavenging ability of baicalin was enhanced in a dose-dependent manner. In summary, baicalin reduces oxidative stress and protects the mitochondria to inhibit apoptosis in the 3D NAFLD model via its own antioxidant activity.
更多
查看译文
关键词
baicalin, nonalcoholic fatty liver disease, tissue-engineered liver, oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要