miRNAs as markers for the development of individualized training regimens: A pilot study

PHYSIOLOGICAL REPORTS(2022)

Cited 2|Views9
No score
Abstract
Small, non-coding RNAs (microRNAs) have been shown to regulate gene expression in response to exercise in various tissues and organs, thus possibly coordinating their adaptive response. Thus, it is likely that differential microRNA expression might be one of the factors that are responsible for different training responses of different individuals. Consequently, determining microRNA patterns might be a promising approach toward the development of individualized training strategies. However, little is known on (1) microRNA patterns and their regulation by different exercise regimens and (2) possible correlations between these patterns and individual training adaptation. Here, we present microarray data on skeletal muscle microRNA patterns in six young, female subjects before and after six weeks of either moderate-intensity continuous or high-intensity interval training on a bicycle ergometer. Our data show that n = 36 different microRNA species were regulated more than twofold in this cohort (n = 28 upregulated and n = 8 downregulated). In addition, we correlated baseline microRNA patterns with individual changes in VO(2)max and identified some specific microRNAs that might be promising candidates for further testing and evaluation in the future, which might eventually lead to the establishment of microRNA marker panels that will allow individual recommendations for specific exercise regimens.
More
Translated text
Key words
individual training adaptation, microRNAs, physical exercise, skeletal muscle
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined