Lightweight hardware fingerprinting solution using inherent memory in off-the-shelf commodity devices

Indonesian Journal of Electrical Engineering and Computer Science(2022)

引用 1|浏览0
暂无评分
摘要
An emerging technology known as Physical unclonable function (PUF) can provide a hardware root-of-trust in building the trusted computing system. PUF exploits the intrinsic process variations during the integrated circuit (IC) fabrication to generate a unique response. This unique response differs from one PUF to the other similar type of PUFs. Static random-access memory PUF (SRAM-PUF) is one of the memory-based PUFs in which the response is generated during the memory power-up process. Non-volatile memory (NVM) architecture like SRAM is available in off-the-shelf microcontroller devices. Exploiting the inherent SRAM as PUF could wide-spread the adoption of PUF. Therefore, in this study, we evaluate the suitability of inherent SRAM available in ATMega2560 microcontroller on Arduino platform as PUF that can provide a unique fingerprint. First, we analyze the start-up values (SUVs) of memory cells and select only the cells that show random values after the power-up process. Subsequently, we statistically analyze the characteristic of fifteen SRAM-PUFs which include uniqueness, reliability, and uniformity. Based on our findings, the SUVs of fifteen on-chip SRAMs achieve 42.64% uniqueness, 97.28% reliability, and 69.16% uniformity. Therefore, we concluded that the available SRAM in off-the-shelf commodity hardware has good quality to be used as PUF.
更多
查看译文
关键词
lightweight hardware fingerprinting solution,devices,inherent memory,off-the-shelf
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要