Fano resonance line shapes in the Raman spectra of tubulin and microtubules reveal quantum effects

Biophysical reports(2022)

引用 5|浏览5
暂无评分
摘要
Microtubules are self-assembling biological nanotubes made of the protein tubulin that are essential for cell motility, cell architecture, cell division, and intracellular trafficking. They demonstrate unique mechanical properties of high resilience and stiffness due to their quasi-crystalline helical structure. It has been theorized that this hollow molecular nanostructure may function like a quantum wire where optical transitions can take place, and photoinduced changes in microtubule architecture may be mediated via changes in disulfide or peptide bonds or stimulated by photoexcitation of tryptophan, tyrosine, or phenylalanine groups, resulting in subtle protein structural changes owing to alterations in aromatic flexibility. Here, we measured the Raman spectra of a microtubule and its constituent protein tubulin both in dry powdered form and in aqueous solution to determine if molecular bond vibrations show potential Fano resonances, which are indicative of quantum coupling between discrete phonon vibrational states and continuous excitonic many-body spectra. The key findings of this work are that we observed the Raman spectra of tubulin and microtubules and found line shapes characteristic of Fano resonances attributed to aromatic amino acids and disulfide bonds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要