Sliding mode control with observer for permanent magnet synchronous machine drives

Indonesian Journal of Electrical Engineering and Computer Science(2022)

Cited 0|Views5
No score
Abstract
<span lang="EN-US">This <span>paper aims to develop the sliding mode control (SMC) scheme in sensorless permanent magnet synchronous machine (PMSM) drives to replace conventional proportional integral (PI) speed control. The SMC is formulated based on the integral sliding surface of the speed error. And the error is corrected based on the concept of Lyapunov stability. The SMC is designed with the load torque observer so that the disturbance can be estimated as feedback to the controller. The vector control technique which is also known as field-oriented control (FOC) is also used to split the stator current into the magnetic field generating part which is the direct axis and the torque generating part which is the quadrature axis. This can be done by using Park and Clarke transformations. The performance of the proposed SMC is tested under changes in load-torque and without load for different speed commands. The results prove that the SMC produces robust performances under variations of speeds and load disturbances. The effectiveness of the proposed method is verified and simulated by using MATLAB/SIMULINK </span>software.</span>
More
Translated text
Key words
mode control,observer,permanent magnet
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined