Rational solvent molecule tuning for high-performance lithium metal battery electrolytes

Nature Energy(2022)

引用 387|浏览31
暂无评分
摘要
Electrolyte engineering improved cycling of Li metal batteries and anode-free cells at low current densities; however, high-rate capability and tuning of ionic conduction in electrolytes are desirable yet less-studied. Here, we design and synthesize a family of fluorinated-1,2-diethoxyethanes as electrolyte solvents. The position and amount of F atoms functionalized on 1,2-diethoxyethane were found to greatly affect electrolyte performance. Partially fluorinated, locally polar –CHF 2 is identified as the optimal group rather than fully fluorinated –CF 3 in common designs. Paired with 1.2 M lithium bis(fluorosulfonyl)imide, these developed single-salt-single-solvent electrolytes simultaneously enable high conductivity, low and stable overpotential, >99.5% Li||Cu half-cell efficiency (up to 99.9%, ±0.1% fluctuation) and fast activation (Li efficiency >99.3% within two cycles). Combined with high-voltage stability, these electrolytes achieve roughly 270 cycles in 50-μm-thin Li||high-loading-NMC811 full batteries and >140 cycles in fast-cycling Cu||microparticle-LiFePO 4 industrial pouch cells under realistic testing conditions. The correlation of Li + –solvent coordination, solvation environments and battery performance is investigated to understand structure–property relationships.
更多
查看译文
关键词
Batteries,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要