Observation of a reduced-turbulence regime with boron powder injection in a stellarator

F. Nespoli,S. Masuzaki, K. Tanaka,N. Ashikawa,M. Shoji,E. P. Gilson, R. Lunsford,T. Oishi,K. Ida, M. Yoshinuma, Y. Takemura, T. Kinoshita,G. Motojima, N. Kenmochi,G. Kawamura, C. Suzuki, A. Nagy,A. Bortolon,N. A. Pablant,A. Mollen,N. Tamura, D. A. Gates, T. Morisaki

Nature Physics(2022)

引用 15|浏览47
暂无评分
摘要
In state-of-the-art stellarators, turbulence is a major cause of the degradation of plasma confinement. To maximize confinement, which eventually determines the amount of nuclear fusion reactions, turbulent transport needs to be reduced. Here we report the observation of a confinement regime in a stellarator plasma that is characterized by increased confinement and reduced turbulent fluctuations. The transition to this regime is driven by the injection of submillimetric boron powder grains into the plasma. With the line-averaged electron density being kept constant, we observe a substantial increase of stored energy and electron and ion temperatures. At the same time, the amplitude of the plasma turbulent fluctuations is halved. While lower frequency fluctuations are damped, higher frequency modes in the range between 100 and 200 kHz are excited. We have observed this regime for different heating schemes, namely with both electron and ion cyclotron resonant radio frequencies and neutral beams, for both directions of the magnetic field and both hydrogen and deuterium plasmas.
更多
查看译文
关键词
Magnetically confined plasmas,Nuclear fusion and fission,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要