Fluorine-doped graphene oxide prepared by direct plasma treatment for supercapacitor application

CHEMICAL ENGINEERING JOURNAL(2022)

Cited 33|Views10
No score
Abstract
Charge storage in supercapacitors is strongly related to the bond characteristics and electronic structure of electrode materials. Graphene-based materials are widely used in a supercapacitor due to the easily tunable properties and high surface/volume ratios. However, we claim that the typical covalent bond characteristics of 2D carbon materials originating from this 2p pi orbital is not very suitable to the application in supercapacitor. Here, we suggest an efficient way to improve the supercapacitor performance by tuning the covalency of bonding between the graphene-based electrode and potassium ion. We, for the first time, also introduce a simple solventfree scale-up doping technique to prepare fluorine-doped graphene oxide (FGO) by direct plasma treatment on graphene oxide (GO) powder at ambient pressure. The FGO enabled fast electrochemical charge transfer and provided a large number of active sites for redox reactions during supercapacitor operation, and those mechanisms were thoroughly studied by various electrochemical analyses. As a result, the fabricated symmetric supercapacitor using FGO electrodes exhibited a maximum power density (-3200 W/kg) and energy density (-25.87 Wh/kg) with superior cycle stability (20000 cycles) without capacitance loss. Furthermore, the computational calculation results clarified the roles of semi-ionic C-F bonding of FGO: huge charge accumulation on the electrodes and superior electrical conductivity. Thus, our study demonstrates a facile strategy to develop promising functionalized materials, which can enhance the viability of supercapacitor for the next generation of energy storage systems.
More
Translated text
Key words
Semi-ionic C-F bonding,Fluorine-doped graphene oxide,Graphene oxide,Plasma treatment,Hybrid supercapacitor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined