Role of zirconia phase transformation, interface processes, and Ta2O5 doping on the blistering phenomenon of molten glass in contact with zirconia-based refractories

J. Hell, P. Vespa, I. Cabodi,O. Citti, F. Fournet-Fayard,J. Fouletier,M.C. Steil

Journal of the European Ceramic Society(2022)

引用 3|浏览5
暂无评分
摘要
Bubble formation and removal within the molten glass is an important issue in glass industry. Various sources of bubbles have been identified in glass manufacturing: decomposition of the glass components, air trapping, oxidation/reduction reactions, precipitation resulting from insufficient refining, etc. It has been demonstrated in a previous paper that the blistering phenomenon at the interface between a molten glass and a zirconia-based refractory can be ascribed to the oxygen semipermeability through the zirconia phase. The objective of this study is to clarify the role of temperature on the blistering process, and especially, below and above the phase transition temperature of zirconia (monoclinic/tetragonal transformation) and to evaluate the role of zirconia doping on the blistering level. The influence of the kinetics of the surface processes at the glass/refractory interface is emphasized. Quantitative measurement of the slight blistering ascribed to the so-called “redox shock” is also given.
更多
查看译文
关键词
Blistering,Molten glass,Refractories,Zirconia,Doping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要