Chrome Extension
WeChat Mini Program
Use on ChatGLM

Mesoporous Single-Crystal Lithium Titanate Enabling Fast-Charging Li-Ion Batteries

ADVANCED MATERIALS(2022)

Cited 25|Views20
No score
Abstract
There remain significant challenges in developing fast-charging materials for lithium-ion batteries (LIBs) due to sluggish ion diffusion kinetics and unfavorable electrolyte mass transportation in battery electrodes. In this work, a mesoporous single-crystalline lithium titanate (MSC-LTO) microrod that can realize exceptional fast charge/discharge performance and excellent long-term stability in LIBs is reported. The MSC-LTO microrods are featured with a single-crystalline structure and interconnected pores inside the entire single-crystalline body. These features not only shorten the lithium-ion diffusion distance but also allow for the penetration of electrolytes into the single-crystalline interior during battery cycling. Hence, the MSC-LTO microrods exhibit unprecedentedly high rate capability, achieving a specific discharge capacity of approximate to 174 mAh g(-1) at 10 C, which is very close to its theoretical capacity, and approximate to 169 mAh g(-1) at 50 C. More importantly, the porous single-crystalline microrods greatly mitigate the structure degradation during a long-term cycling test, offering approximate to 92% of the initial capacity after 10 000 cycles at 20 C. This work presents a novel strategy to engineer porous single-crystalline materials and paves a new venue for developing fast-charging materials for LIBs.
More
Translated text
Key words
fast-charging electrode, ion transportation pathway, lithium-ion batteries, lithium titanate, mesoporous single-crystalline structure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined