2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: Executive summary - A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the American Stroke Association, American Association of Neuroscience Nurses

Catheterization and Cardiovascular Interventions(2011)

Cited 0|Views2
No score
Abstract
It is essential that the medical profession play a central role in critically evaluating the evidence related to drugs, devices, and procedures for the detection, management, or prevention of disease. Properly applied, rigorous, expert analysis of the available data documenting absolute and relative benefits and risks of these therapies and procedures can improve the effectiveness of care, optimize patient outcomes, and favorably affect the cost of care by focusing resources on the most effective strategies. One important use of such data is the production of clinical practice guidelines that, in turn, can provide a foundation for a variety of other applications such as performance measures, appropriate use criteria, clinical decision support tools, and quality improvement tools. The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have jointly engaged in the production of guidelines in the area of cardiovascular disease since 1980. The ACCF/AHA Task Force on Practice Guidelines (Task Force) is charged with developing, updating, and revising practice guidelines for cardiovascular diseases and procedures, and the Task Force directs and oversees this effort. Writing committees are charged with assessing the evidence as an independent group of authors to develop, update, or revise recommendations for clinical practice. Experts in the subject under consideration have been selected from both organizations to examine subject-specific data and write guidelines in partnership with representatives from other medical practitioner and specialty groups. Writing committees are specifically charged to perform a formal literature review; weigh the strength of evidence for or against particular tests, treatments, or procedures; and include estimates of expected health outcomes where data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that may influence the choice of tests or therapies are considered. When available, information from studies on cost is considered, but data on efficacy and clinical outcomes constitute the primary basis for recommendations in these guidelines. In analyzing the data and developing the recommendations and supporting text, the writing committee used evidence-based methodologies developed by the Task Force that are described elsewhere.1 The committee reviewed and ranked evidence supporting current recommendations with the weight of evidence ranked as Level A if the data were derived from multiple randomized clinical trials or meta-analyses. The committee ranked available evidence as Level B when data were derived from a single randomized trial or nonrandomized studies. Evidence was ranked as Level C when the primary source of the recommendation was consensus opinion, case studies, or standard of care. In the narrative portions of these guidelines, evidence is generally presented in chronological order of development. Studies are identified as observational, retrospective, prospective, or randomized when appropriate. For certain conditions for which inadequate data are available, recommendations are based on expert consensus and clinical experience and ranked as Level C. An example is the use of penicillin for pneumococcal pneumonia, for which there are no randomized trials and treatment is based on clinical experience. When recommendations at Level C are supported by historical clinical data, appropriate references (including clinical reviews) are cited if available. For issues for which sparse data are available, a survey of current practice among the clinicians on the writing committee was the basis for Level C recommendations, and no references are cited. The schema for Classification of Recommendations and Level of Evidence is summarized in Table 1, which also illustrates how the grading system provides an estimate of the size and the certainty of the treatment effect. A new addition to the ACCF/AHA methodology is a separation of the Class III recommendations to delineate whether the recommendation is determined to be of “no benefit” or associated with “harm” to the patient. In addition, in view of the increasing number of comparative effectiveness studies, comparator verbs and suggested phrases for writing recommendations for the comparative effectiveness of one treatment/strategy with respect to another for Class of Recommendation I and IIa, Level of Evidence A or B only have been added. The Task Force makes every effort to avoid actual, potential, or perceived conflicts of interest that may arise as a result of relationships with industry and other entities (RWI) among the writing committee. Specifically, all members of the writing committee, as well as peer reviewers of the document, are asked to disclose all current relationships and those 24 months before initiation of the writing effort that may be perceived as relevant. All guideline recommendations require a confidential vote by the writing committee and must be approved by a consensus of the members voting. Any writing committee member who develops a new relationship with industry during his or her tenure is required to notify guideline staff in writing. These statements are reviewed by the Task Force and all members during each conference call and/or meeting of the writing committee and are updated as changes occur. For detailed information about guideline policies and procedures, please refer to the ACCF/AHA methodology and policies manual.1 Authors' and peer reviewers' relationships with industry and other entities pertinent to this guideline are disclosed in Appendixes 1 and 2, respectively. Disclosure information for the Task Force is available online at www. cardiosource.org/ACC/About-ACC/Leadership/Guidelines-and-Documents-Task-Forces.aspx. The work of the writing committee was supported exclusively by the ACCF and AHA (and other partnering organizations) without commercial support. Writing committee members volunteered their time for this effort. The ACCF/AHA practice guidelines address patient populations (and healthcare providers) residing in North America. As such, drugs that are currently unavailable in North America are discussed in the text without a specific class of recommendation. For studies performed in large numbers of subjects outside of North America, each writing committee reviews the potential impact of different practice patterns and patient populations on the treatment effect and the relevance to the ACCF/AHA target population to determine whether the findings should inform a specific recommendation. The ACCF/AHA practice guidelines are intended to assist healthcare providers in clinical decision making by describing a range of generally acceptable approaches for the diagnosis, management, and prevention of specific diseases or conditions. These practice guidelines represent a consensus of expert opinion after a thorough review of the available current scientific evidence and are intended to improve patient care. The guidelines attempt to define practices that meet the needs of most patients in most circumstances. The ultimate judgment regarding care of a particular patient must be made by the healthcare provider and patient in light of all the circumstances presented by that patient. Thus, there are situations in which deviations from these guidelines may be appropriate. Clinical decision making should consider the quality and availability of expertise in the area where care is provided. When these guidelines are used as the basis for regulatory or payer decisions, the goal should be improvement in quality of care. The Task Force recognizes that situations arise for which additional data are needed to better inform patient care; these areas will be identified within each respective guideline when appropriate. Prescribed courses of treatment in accordance with these recommendations are effective only if they are followed. Because lack of patient understanding and adherence may adversely affect outcomes, physicians and other healthcare providers should make every effort to engage the patient's active participation in prescribed medical regimens and lifestyles. The guidelines will be reviewed annually by the Task Force and considered current unless they are updated, revised, or withdrawn from distribution. The full-text guideline is e-published in the Journal of the American College of Cardiology, Circulation, and Stroke and is posted on the American College of Cardiology (www.cardiosource.org) and AHA (my.americanheart.org) World Wide Web sites. Alice K. Jacobs, MD, FACC, FAHA Chair, ACCF/AHA Task Force on Practice Guidelines Sidney C. Smith, Jr, MD, FACC, FAHA Immediate Past Chair, ACCF/AHA Task Force on Practice Guidelines The ACCF/AHA writing committee to create the 2011 Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease (ECVD) conducted a comprehensive review of the literature relevant to carotid and vertebral artery interventions through May 2010. The recommendations listed in this document are, whenever possible, evidence-based. Searches were limited to studies, reviews, and other evidence conducted in human subjects and published in English. Key search words included but were not limited to angioplasty, atherosclerosis, carotid artery disease, carotid endarterectomy (CEA), carotid revascularization, carotid stenosis, carotid stenting, carotid artery stenting (CAS), extracranial carotid artery stenosis, stroke, transient ischemic attack (TIA), and vertebral artery disease. Additional searches cross-referenced these topics with the following subtopics: acetylsalicylic acid, antiplatelet therapy, carotid artery dissection, cerebral embolism, cerebral protection, cerebrovascular disorders, complications, comorbidities, extracranial atherosclerosis, intima-media thickness, medical therapy, neurological examination, noninvasive testing, pharmacological therapy, preoperative risk, primary closure, risk factors, and vertebral artery dissection. Additionally, the committee reviewed documents related to the subject matter previously published by the ACCF and AHA (and other partnering organizations). References selected and published in this document are representative and not all-inclusive. To provide clinicians with a comprehensive set of data, whenever deemed appropriate or when published in the article, data from the clinical trial were used to calculate the absolute risk difference and number needed to treat or harm; data related to the relative treatment effects are also provided, such as odds ratio (OR), relative risk, hazard ratio (HR), or incidence rate ratio, along with confidence intervals (CIs) when available. The committee used the evidence-based methodologies developed by the Task Force and acknowledges that adjudication of the evidence was complicated by the timing of the evidence when 2 different interventions were contrasted. Despite similar study designs (e.g., randomized controlled trials), research on CEA was conducted in a different era (and thus, evidence existed in the peer-reviewed literature for more time) than the more contemporary CAS trials. Because evidence is lacking in the literature to guide many aspects of the care of patients with nonatherosclerotic carotid disease and most forms of vertebral artery disease, a relatively large number of the recommendations in this document are based on consensus. The writing committee chose to limit the scope of this document to the vascular diseases themselves and not to the management of patients with acute stroke or to the detection or prevention of disease in individuals or populations at risk, which are covered in another guideline.2 The full-text guideline is based on the presumption that readers will search the document for specific advice on the management of patients with ECVD at different phases of illness. Following the typical chronology of the clinical care of patients with ECVD, the guideline is organized in sections that address the pathogenesis, epidemiology, diagnostic evaluation, and management of patients with ECVD, including prevention of recurrent ischemic events. The text, recommendations, and supporting evidence are intended to assist the diverse array of clinicians who provide care for patients with ECVD. In particular, they are designed to aid primary care clinicians, medical and surgical cardiovascular specialists, and trainees in the primary care and vascular specialties, as well as nurses and other healthcare personnel who seek clinical tools to promote the proper evaluation and management of patients with ECVD in both inpatient and outpatient settings. Application of the recommended diagnostic and therapeutic strategies, combined with careful clinical judgment, should improve diagnosis of each syndrome, enhance prevention, and decrease rates of stroke and related long-term disability and death. The ultimate goal of the guideline statement is to improve the duration and quality of life for people with ECVD. The writing committee to develop the 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS Guideline on the Management of Patients With Extracranial Carotid and Vertebral Artery Disease was composed of experts in the areas of medicine, surgery, neurology, cardiology, radiology, vascular surgery, neurosurgery, neuroradiology, interventional radiology, noninvasive imaging, emergency medicine, vascular medicine, nursing, epidemiology, and biostatistics. The committee included representatives of the American Stroke Association (ASA), ACCF, AHA, American Academy of Neurology (AAN), American Association of Neuroscience Nurses (AANN), American Association of Neurological Surgeons (AANS), American College of Emergency Physicians (ACEP), American College of Radiology (ACR), American Society of Neuroradiology (ASNR), Congress of Neurological Surgeons (CNS), Society of Atherosclerosis Imaging and Prevention (SAIP), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Cardiovascular Computed Tomography (SCCT), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), Society for Vascular Medicine (SVM), and Society for Vascular Surgery (SVS). The document was reviewed by 55 external reviewers, including individuals nominated by each of the ASA, ACCF, AHA, AANN, AANS, ACEP, American College of Physicians, ACR, ASNR, CNS, SAIP, SCAI, SCCT, SIR, SNIS, SVM, and SVS, and by individual content reviewers, including members from the ACCF Catheterization Committee, ACCF Interventional Scientific Council, ACCF Peripheral Vascular Disease Committee, ACCF Surgeons' Scientific Council, ACCF/SCAI/SVMB/SIR/ASITN Expert Consensus Document on Carotid Stenting, ACCF/AHA Peripheral Arterial Disease Guideline Writing Committee, AHA Peripheral Vascular Disease Steering Committee, AHA Stroke Leadership Committee, and individual nominees. All information on reviewers' relationships with industry and other entities was distributed to the writing committee and is published in this document (Appendix 2). This document was reviewed and approved for publication by the governing bodies of the ASA, ACCF and AHA and endorsed by the AANN, AANS, ACR, ASNR, CNS, SAIP, SCAI, SCCT, SIR, SNIS, SVM, and SVS. The AAN affirms the value of this guideline. In asymptomatic patients with known or suspected carotid stenosis, duplex ultrasonography, performed by a qualified technologist in a certified laboratory, is recommended as the initial diagnostic test to detect hemodynamically significant carotid stenosis. (Level of Evidence: C) It is reasonable to perform duplex ultrasonography to detect hemodynamically significant carotid stenosis in asymptomatic patients with carotid bruit. (Level of Evidence: C) It is reasonable to repeat duplex ultrasonography annually by a qualified technologist in a certified laboratory to assess the progression or regression of disease and response to therapeutic interventions in patients with atherosclerosis who have had stenosis greater than 50% detected previously. Once stability has been established over an extended period or the patient's candidacy for further intervention has changed, longer intervals or termination of surveillance may be appropriate. (Level of Evidence: C) Duplex ultrasonography to detect hemodynamically significant carotid stenosis may be considered in asymptomatic patients with symptomatic peripheral arterial disease (PAD), coronary artery disease, or atherosclerotic aortic aneurysm, but because such patients already have an indication for medical therapy to prevent ischemic symptoms, it is unclear whether establishing the additional diagnosis of ECVD in those without carotid bruit would justify actions that affect clinical outcomes. (Level of Evidence: C) Duplex ultrasonography might be considered to detect carotid stenosis in asymptomatic patients without clinical evidence of atherosclerosis who have 2 or more of the following risk factors: hypertension, hyperlipidemia, tobacco smoking, a family history in a first-degree relative of atherosclerosis manifested before age 60 years, or a family history of ischemic stroke. However, it is unclear whether establishing a diagnosis of ECVD would justify actions that affect clinical outcomes. (Level of Evidence: C) Carotid duplex ultrasonography is not recommended for routine screening of asymptomatic patients who have no clinical manifestations of or risk factors for atherosclerosis. (Level of Evidence: C) Carotid duplex ultrasonography is not recommended for routine evaluation of patients with neurological or psychiatric disorders unrelated to focal cerebral ischemia, such as brain tumors, familial or degenerative cerebral or motor neuron disorders, infectious and inflammatory conditions affecting the brain, psychiatric disorders, or epilepsy. (Level of Evidence: C) Routine serial imaging of the extracranial carotid arteries is not recommended for patients who have no risk factors for development of atherosclerotic carotid disease and no disease evident on initial vascular testing. (Level of Evidence: C) The initial evaluation of patients with transient retinal or hemispheric neurological symptoms of possible ischemic origin should include noninvasive imaging for the detection of ECVD. (Level of Evidence: C) Duplex ultrasonography is recommended to detect carotid stenosis in patients who develop focal neurological symptoms corresponding to the territory supplied by the left or right internal carotid artery. (Level of Evidence: C) In patients with acute, focal ischemic neurological symptoms corresponding to the territory supplied by the left or right internal carotid artery, magnetic resonance angiography (MRA) or computed tomography angiography (CTA) is indicated to detect carotid stenosis when sonography either cannot be obtained or yields equivocal or otherwise nondiagnostic results. (Level of Evidence: C) When extracranial or intracranial cerebrovascular disease is not severe enough to account for neurological symptoms of suspected ischemic origin, echocardiography should be performed to search for a source of cardiogenic embolism. (Level of Evidence: C) Correlation of findings obtained by several carotid imaging modalities should be part of a program of quality assurance in each laboratory that performs such diagnostic testing. (Level of Evidence: C) When an extracranial source of ischemia is not identified in patients with transient retinal or hemispheric neurological symptoms of suspected ischemic origin, CTA, MRA, or selective cerebral angiography can be useful to search for intracranial vascular disease. (Level of Evidence: C) When the results of initial noninvasive imaging are inconclusive, additional examination by use of another imaging method is reasonable. In candidates for revascularization, MRA or CTA can be useful when results of carotid duplex ultrasonography are equivocal or indeterminate. (Level of Evidence: C) When intervention for significant carotid stenosis detected by carotid duplex ultrasonography is planned, MRA, CTA, or catheter-based contrast angiography can be useful to evaluate the severity of stenosis and to identify intrathoracic or intracranial vascular lesions that are not adequately assessed by duplex ultrasonography. (Level of Evidence: C) When noninvasive imaging is inconclusive or not feasible because of technical limitations or contraindications in patients with transient retinal or hemispheric neurological symptoms of suspected ischemic origin, or when noninvasive imaging studies yield discordant results, it is reasonable to perform catheter-based contrast angiography to detect and characterize extracranial and/or intracranial cerebrovascular disease. (Level of Evidence: C) MRA without contrast is reasonable to assess the extent of disease in patients with symptomatic carotid atherosclerosis and renal insufficiency or extensive vascular calcification. (Level of Evidence: C) It is reasonable to use magnetic resonance imaging (MRI) systems capable of consistently generating high-quality images while avoiding low-field systems that do not yield diagnostically accurate results. (Level of Evidence: C) CTA is reasonable for evaluation of patients with clinically suspected significant carotid atherosclerosis who are not suitable candidates for MRA because of claustrophobia, implanted pacemakers, or other incompatible devices. (Level of Evidence: C) Duplex carotid ultrasonography might be considered for patients with nonspecific neurological symptoms when cerebral ischemia is a plausible cause. (Level of Evidence: C) When complete carotid arterial occlusion is suggested by duplex ultrasonography, MRA, or CTA in patients with retinal or hemispheric neurological symptoms of suspected ischemic origin, catheter-based contrast angiography may be considered to determine whether the arterial lumen is sufficiently patent to permit carotid revascularization. (Level of Evidence: C) Catheter-based angiography may be reasonable in patients with renal dysfunction to limit the amount of radiographic contrast material required for definitive imaging for evaluation of a single vascular territory. (Level of Evidence: C) Antihypertensive treatment is recommended for patients with hypertension and asymptomatic extracranial carotid or vertebral atherosclerosis to maintain blood pressure below 140/90 mm Hg.3-7 (Level of Evidence: A) Except during the hyperacute period, antihypertensive treatment is probably indicated in patients with hypertension and symptomatic extracranial carotid or vertebral atherosclerosis, but the benefit of treatment to a specific target blood pressure (e.g., below 140/90 mm Hg) has not been established in relation to the risk of exacerbating cerebral ischemia. (Level of Evidence: C) Patients with extracranial carotid or vertebral atherosclerosis who smoke cigarettes should be advised to quit smoking and offered smoking cessation interventions to reduce the risks of atherosclerosis progression and stroke.8-12 (Level of Evidence: B Treatment with a statin medication is recommended for all patients with extracranial carotid or vertebral atherosclerosis to reduce low-density lipoprotein (LDL) cholesterol below 100 mg/dL.4, 13, 14 (Level of Evidence: B) Treatment with a statin medication is reasonable for all patients with extracranial carotid or vertebral atherosclerosis who sustain ischemic stroke to reduce LDL-cholesterol to a level near or below 70 mg/dL.13 (Level of Evidence: B) If treatment with a statin (including trials of higher-dose statins and higher-potency statins) does not achieve the goal selected for a patient, intensifying LDL-lowering drug therapy with an additional drug from among those with evidence of improving outcomes (i.e., bile acid sequestrants or niacin) can be effective.15-18 (Level of Evidence: B) For patients who do not tolerate statins, LDL-lowering therapy with bile acid sequestrants and/or niacin is reasonable.15, 17, 19 (Level of Evidence: B) Diet, exercise, and glucose-lowering drugs can be useful for patients with diabetes mellitus and extracranial carotid or vertebral artery atherosclerosis. The stroke prevention benefit, however, of intensive glucose-lowering therapy to a glycosylated hemoglobin A1c level less than 7.0% has not been established.20, 21 (Level of Evidence: A) Administration of statin-type lipid-lowering medication at a dosage sufficient to reduce LDL-cholesterol to a level near or below 70 mg/dL is reasonable in patients with diabetes mellitus and extracranial carotid or vertebral artery atherosclerosis for prevention of ischemic stroke and other ischemic cardiovascular events.22 (Level of Evidence: B) Antiplatelet therapy with aspirin, 75 to 325 mg daily, is recommended for patients with obstructive or nonobstructive atherosclerosis that involves the extracranial carotid and/or vertebral arteries for prevention of myocardial infarction (MI) and other ischemic cardiovascular events, although the benefit has not been established for prevention of stroke in asymptomatic patients.14, 23-25 (Level of Evidence: A) In patients with obstructive or nonobstructive extracranial carotid or vertebral atherosclerosis who have sustained ischemic stroke or TIA, antiplatelet therapy with aspirin alone (75 to 325 mg daily), clopidogrel alone (75 mg daily), or the combination of aspirin plus extended-release dipyridamole (25 and 200 mg twice daily, respectively) is recommended (Level of Evidence: B) and preferred over the combination of aspirin with clopidogrel14, 25-29 (Level of Evidence: B). Selection of an antiplatelet regimen should be individualized on the basis of patient risk factor profiles, cost, tolerance, and other clinical characteristics, as well as guidance from regulatory agencies. Antiplatelet agents are recommended rather than oral anticoagulation for patients with atherosclerosis of the extracranial carotid or vertebral arteries with30, 31 (Level of Evidence: B) or without (Level of Evidence: C) ischemic symptoms. (For patients with allergy or other contraindications to aspirin, see Class IIa recommendation #2, this section) In patients with extracranial cerebrovascular atherosclerosis who have an indication for anticoagulation, such as atrial fibrillation or a mechanical prosthetic heart valve, it can be beneficial to administer a vitamin K antagonist (such as warfarin, dose-adjusted to achieve a target international normalized ratio [INR] of 2.5 [range 2.0 to 3.0]) for prevention of thromboembolic ischemic events.32 (Level of Evidence: C) For patients with atherosclerosis of the extracranial carotid or vertebral arteries in whom aspirin is contraindicated by factors other than active bleeding, including allergy, either clopidogrel (75 mg daily) or ticlopidine (250 mg twice daily) is a reasonable alternative. (Level of Evidence: C) Full-intensity parenteral anticoagulation with unfractionated heparin or low-molecular-weight heparinoids is not recommended for patients with extracranial cerebrovascular atherosclerosis who develop transient cerebral ischemia or acute ischemic stroke.2, 33, 34 (Level of Evidence: B) Administration of clopidogrel in combination with aspirin is not recommended within 3 months after stroke or TIA.27 (Level of Evidence: B Patients at average or low surgical risk who experience nondisabling ischemic stroke† or transient cerebral ischemic symptoms, including hemispheric events or amaurosis fugax, within 6 months (symptomatic patients) should undergo CEA if the diameter of the lumen of the ipsilateral internal carotid artery is reduced more than 70%‡ as documented by noninvasive imaging35, 36 (Level of Evidence: A) or more than 50% as documented by catheter angiography35-38 (Level of Evidence: B) and the anticipated rate of perioperative stroke or mortality is less than 6%. CAS is indicated as an alternative to CEA for symptomatic patients at average or low risk of complications associated with endovascular intervention when the diameter of the lumen of the internal carotid artery is reduced by more than 70% as documented by noninvasive imaging or more than 50% as documented by catheter angiography and the anticipated rate of periprocedural stroke or mortality is less than 6%.39 (Level of Evidence: B) Selection of asymptomatic patients for carotid revascularization should be guided by an assessment of comorbid conditions, life expectancy, and other individual factors and should include a thorough discussion of the risks and benefits of the procedure with an understanding of patient preferences. (Level of Evidence: C) It is reasonable to perform CEA in asymptomatic patients who have more than 70% stenosis of the internal carotid artery if the risk of perioperative stroke, MI, and death is low.38, 40-44 (Level of Evidence: A) It is reasonable to choose CEA over CAS when revascularization is indicated in older patients, particularly when arterial pathoanatomy is unfavorable for endovascular intervention.39, 45-49 (Level of Evidence: B) It is reasonable to choose CAS over CEA when revascularization is indicated in patients with neck anatomy unfavorable for arterial surgery.50-54 § (Level of Evidence: B) When revascularization is indicated for patients with TIA or stroke and there are no contraindications to early revascularization, intervention within 2 weeks of the index event is reasonable rather than delaying surgery.55 (Level of Evidence: B) Prophylactic CAS might be considered in highly selected patients with asymptomatic carotid stenosis (minimum 60% by angiography, 70% by validated Doppler ultrasound), but its effectiveness compared with medical therapy alone in this situation is not well established.39 (Level of Evidence: B) In symptomatic or asymptomatic patients at high risk of complications for carotid revascularization by either CEA or CAS because of comorbidities, the effective
More
Translated text
Key words
correction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined