Defect dynamics in directed self-assembly of block copolymers (Conference Presentation)

Advances in Patterning Materials and Processes XXXV(2018)

引用 0|浏览4
暂无评分
摘要
Directed self-assembly (DSA) of block copolymers (BCPs) is a lithographic technique that is expected to be mutually complimentary with ArF immersion lithography, EUV lithography, electron beam direct writing, or nanoimprint for sub-15 nm line patterning and sub-20 nm contact hole patterning. Defect mitigation is the primary challenge behind the use of DSA lithography in practical applications in advanced semiconductor device manufacturing. Therefore, resolve this issue, defect dynamics needs to be clarified using in-situ measurements of self-assembling processes of BCPs in conjunction with modeling approaches. In this work, the evolution of a surface morphology in self-assembling processes of BCPs during annealing was investigated using in-situ atomic force microscope (AFM).5 A JPK NanoWizard ULTRA Speed AFM (JPK Instruments AG) under AC mode (lock-in phase signal image) was employed to carry out in-situ measurements of self-assembling of symmetrical polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films with a thickness of 40 nm, and a domain spacing 30 nm domain spacing (L0) of 30 nm on a 5 nm thick neutral layer (PS-r-PMMA) during the thermal annealing process starting from a disordered as-cast state. The COOrdinated Line epitaxy (COOL) process was applied to provide DSA line multiplication patterns as hybrid guide patterns which act as chemical and physical epitaxy process. The in-situ observation approach of the surface morphology during micro-phase separation process revealed the defect generation and rectification processes in DSA thin films. A combination of the time development data in the in-situ AFM and grazing-incidence small-angle X-ray scattering (GI-SAXS) will also be discussed to develop a kinetic modeling for predicting dynamical changes in the three-dimensional nanostructures.
更多
查看译文
关键词
block copolymers,self-assembly
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要