Success and Lessons Learned from Polymerflooding a Ultra High Temperature and Ultra High Salinity Oil Reservoir - A Case Study from West China

SPE Improved Oil Recovery Conference(2016)

Cited 4|Views0
No score
Abstract
Abstract Though polymer flooding is widely considered as a good EOR method for heterogeneous fields, it's always a difficulty to be applied in high temperature and high salinity reservoirs, limited by polymer property. GS-E31 reservoir in West China has ultra-high temperature, 258.8°F (126°C), and ultra-high salinity, 18×104mg/L. It is highly heterogeneous, developed with flowing channels. Starting in July 2012, a new polymer (SMG) flooding was pilot tested, with success technically and economically. Before SMG injection, tracer test was conducted in the pilot, figuring out the distribution position and direction of prevailing flowing channels. The microscopic pore structure and size were studied. The temperature and salinity resistance of the new particle-type polymer under reservoir condition was tested. The oil displacing effect was simulated on parallel dual core model. For the pilot test, two slugs with different particle sizes were designed. To guarantee the flooding effect, a preposed PPG (preformed particle gel) slug with larger size was designed to inhibit prevailing flow channels. The lab studies showed the new polymer particles kept stable appearance within 100 days under the reservoir temperature and salinity, denoting high capacity of temperature and salinity resistance. And by physical simulation it could obtain EOR of 12.3%. The pilot test was started in July 2012 and ended in December 2013, and the total liquid injection amount was 12.2×104m3, which was 0.1 PV. During operation, the polymer particle size and concentration were adjusted based on the observing data. As a result, the monthly oil rate of the pilot was increased from 1313 t to 2049.6 t, with increase of 736.6 t; and the water cut was decreased from 91.7% to 84.1%. The cumulative oil incremental was 1.03×104t, and the cumulative water production decrease was 4.79×104m3. The input-output ratio was 1:2.09. Though the economical result was not ideal, it was still acceptable under such severe reservoir conditions. Besides, the surveillance showed the preposed channeling inhibition slug did not perform well, which affected the NPF effect, and especially led to the quick water cut rising in the follow-up water injection phase. Summarizing the lat studies and pilot tests, the new particle-type polymer has obtained a large breakthrough for temperature and salinity resistance comparing to traditional polymer, and the EOR mechanism is different. The matching relationship between particle size and formation pore size is very important for polymer flooding effect. To further study on lab evaluation method and plan optimization is needed. The technology has important referencing meaning for efficiently developing high temperature and high salinity fields.
More
Translated text
Key words
salinity,oil,high temperature
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined