KIM-1 and GADDI-153 gene expression in paracetamol-induced acute kidney injury: effects of N-acetylcysteine, N-acetylmethionine, and N-acetylglucosamine

TURKISH JOURNAL OF BIOCHEMISTRY-TURK BIYOKIMYA DERGISI(2022)

引用 2|浏览4
暂无评分
摘要
Objectives Acute kidney injury (AKI) is a critical clinical event characterized by a reduction in the excretory function of the kidneys. N-acetylcysteine (NAC), N-acetylmethionine (NAM) and N-acetylglucosamine (NAG) are antioxidants with scanty known genetic mechanisms. We aimed to assess both kidney injury molecule-1 (KIM-1) and growth-arrested DNA damage-inducible gene-153 (GADD-153) genes expression in paracetamol (PA) induced AKI. Also, to recognize whether NAC, NAM and/or NAG have roles in altering the expression of these genes for ameliorating the AKI induced by PA. Methods The present preliminary study achieved the AKI model by oral administration of PA therapeutic dose for 15 days in experimental male rats. Serum urea, creatinine, and renal oxidative stress parameters were analyzed. Genetic expression of KIM-1 and GADD-153 were determined using real time-PCR. Results Significant elevations of serum urea, creatinine and nitric oxide in renal tissue after PA administration; however, total thiol content was reduced. In addition, both KIM-1 and GADD-153 were upregulated. These biochemical alterations were improved after using NAC and partially after NAM; however, NAG had little effect. Conclusions Up-regulation of both KIM-1 and GADD-153 occur in AKI induced by PA, which was significantly reversed by NAC.
更多
查看译文
关键词
acute kidney injury, growth arrested DNA damage-inducible gene-153, kidney injury molecule-1, N-acetylcysteine, paracetamol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要