Chrome Extension
WeChat Mini Program
Use on ChatGLM

Osa‐miR398b boosts H2O2 production and rice blast disease‐resistance via multiple superoxide dismutases

New Phytologist(2019)

Cited 110|Views14
No score
Abstract
miRNAs contribute to plant resistance against pathogens. Previously, we found that the function of miR398b in immunity in rice differs from that in Arabidopsis. However, the underlying mechanisms are unclear. In this study, we characterized the mutants of miR398b target genes and demonstrated that multiple superoxide dismutase genes contribute to miR398b‐regulated rice immunity against the blast fungus Magnaporthe oryzae. Out of the four target genes of miR398b, mutations in Cu/Zn‐Superoxidase Dismutase1 (CSD1), CSD2 and Os11g09780 (Superoxide DismutaseX,SODX) led to enhanced resistance to M. oryzae and increased hydrogen peroxide (H2O2) accumulation. By contrast, mutations in Copper Chaperone for Superoxide Dismutase (CCSD) resulted in enhanced susceptibility. Biochemical studies revealed that csd1, csd2 and sodx displayed altered expression of CSDs and other superoxide dismutase (SOD) family members, leading to increased total SOD enzyme activity that positively contributed to higher H2O2 production. By contrast, the ccsd mutant showed CSD protein deletion, resulting in decreased CSD and total SOD enzyme activity. Our results demonstrate the roles of different SODs in miR398b‐regulated resistance to rice blast disease, and uncover an integrative regulatory network in which miR398b boosts total SOD activity to upregulate H2O2 concentration and thereby improve disease resistance.
More
Translated text
Key words
rice
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined