Epitope Diversity and SARS-CoV-2 Variants Neutralizing Capacity of SARS-CoV-2 Hyperimmune Intravenous Immunoglobulins for Treatment of COVID-19

Tang J,Lee Y, Ravichandran S, Grubbs G, Huang C, Stauft Cb,Tony T. Wang, Golding B,Hana Golding,Surender Khurana

Social Science Research Network(2021)

引用 0|浏览2
暂无评分
摘要
Hyperimmune immunoglobulin (hCoV-2IG) preparations generated from SARS-CoV-2 convalescent plasma (CP) are under evaluation in several clinical trials of hospitalized COVID-19 patients. Here we explored the antibody epitope repertoire, antibody binding and virus neutralizing capacity of six hCoV-2IG batches as well as nine convalescent plasma (CP) lots against SARS-CoV-2 and emerging variants of concern (VOC). The Gene-Fragment Phage display library spanning the SARS-CoV-2 spike-based epitope-mapping demonstrated broad recognition of multiple antigenic sites spanning the entire spike including NTD, RBD, S1/S2 cleavage site, S2-fusion peptide and S2-heptad repeat regions. Antibody binding to the immunodominant epitopes was higher for hCoV-2IG than CP, with predominant binding to the fusion peptide. In the pseudovirus neutralization assay (PsVNA) and in the wild-type SARS-CoV-2 PRNT assay, hCoV-2IG lots showed higher titers against the WA-1 strain compared with CP. Neutralization of SARS-CoV-2 VOCs from around the globe were reduced to a different extent by hCoV-2IG lots. The most significant loss of neutralizing activity was seen against the B.1.351 (9-fold) followed by P.1 (3.5-fold), with minimal loss of activity against the B.1.17 and B.1.429 ( < 2-fold). Again, the CP showed more pronounced loss of cross-neutralization against the VOCs compared with hCoV-2IG. Significant reduction of hCoV-2IG binding was observed to the RBD-E484K followed by RBD-N501Y and minimal loss of binding to RBD-K417N compared with unmutated RBD. This study suggests that post-exposure treatment with hCoV-2IG is preferable to CP. In countries with co-circulating SARS-CoV-2 variants, identifying the infecting virus strain could inform optimal treatments, but would likely require administration of higher doses achieved by larger volumes or repeated infusions of hCOV-2IG or CP, in patients infected with the emerging SARS-CoV-2 variants. Funding: The research work described in this manuscript was supported by FDA Medical Countermeasures Initiative (MCMi) grant # OCET 2021-1565 and NIH-NIAID IAA #AAI20040. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Declaration of Interest: The authors declare no competing interests. Ethical Approval: This study was approved by Food and Drug Administration’s Research Involving Human Subjects Committee (RIHSC #2020-04-02). This study complied with all relevant ethical regulations for work with human participants, and informed consent was obtained. Samples were collected from patients who provided informed consent to participate in the study.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要