Cancer and COVID-19: A proposed mechanism with therapeutic interventions.

JOURNAL OF CLINICAL ONCOLOGY(2021)

Cited 0|Views5
No score
Abstract
3135 Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel betacoronavirus that causes the respiratory illness coronavirus disease 2019 (COVID-19). COVID-19 ranges in severity from an asymptomatic viral infection to life-threatening cases of pneumonia, acute respiratory distress syndrome (ARDS), multi-organ damage and sepsis. Cancer patients are at an increased risk of severe SARS-CoV-2 infection due to their immunocompromised status. We propose a mechanism by which SARS-CoV-2 infection causes multiple organ damage through IL-6-mediated inflammation and hypoxia-induced cellular metabolic alterations leading to cell death. Hypoxia is also induced by malignancy due to alterations in metabolism, resulting in greater IL-6 secretion. Methods: To highlight the possible effect of active cancer on the likelihood of hypoxia in COVID-19, we analyzed the correlation between cancer status and the severity of COVID-19 from the COVID-19 and Cancer Consortium data registry. For cancer status, we looked at progressive cancer and remission of cancer only -- those being the two extremes of presence and absence of uncontrolled cancer. Similar to prior studies, the severity of COVID-19 was used as an indication of hypoxia. Results: We observed a 24% positive deviation between expected and actual number of patients with actively progressing cancer who had hypoxic COVID-19 (moderate to severe), and a 26.9% negative deviation between expected and actual number of patients with active cancer who had no hypoxia with COVID-19 (p<0.0001). Conversely, for patients with cancer in remission, there was only a +5.8% and -5.1% deviation between expected and actual number of patients who did not have hypoxia and who had hypoxia, respectively. Conclusions: These results suggest that in the presence of poorly controlled malignancy, there is an increased likelihood of hypoxia in patients with COVID-19, thereby exacerbating downstream cytokine release syndrome and contributing to prolonged systemic inflammatory injury. Appreciating this pathway, future therapies can be developed to target the pathogenesis of both diseases and prevent progression, as seen with mesenchymal stem cells, which demonstrated a 91% overall survival and 100% survival in patients younger than 85 years old at one month after a single treatment.[Table: see text]
More
Translated text
Key words
therapeutic interventions,cancer
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined