Phytoplankton Exopolymers Enhance Adhesion of Microplastic Particles to Submersed Surfaces

Ecologica Montenegrina(2019)

引用 3|浏览0
暂无评分
摘要
Intense pollution of marine environments with plastic waste, including micro- and nanoplastics, is a new and poorly studied threat measured in tens of million tonnes annually. Despite a huge scale of the problem, almost nothing is known about pathways and mechanisms of involvement of micro- and nanoplastics in marine food webs, trophic processes, global biogeochemical cycles. In this study, a hypothesis is considered and experimentally verified about the role exopolymers from marine phytoplankton play in flocculating micro- and nanoplastics and forming their aggregates in marine environments to transfer and deposit them further in bottom sediments. In experiments with non-axenic cultures of the cryptophyte Rhodomonas salina (RHO) and the green alga Tetraselmis suecica (TET) exposed to micro-polystyrene particles (MP, 4.3 μm diam., about 0.4 × 106 particles/ml, 16 mg/L), microalgal exudates were shown to promote MP flocculation and immobilization on vertical glass surfaces. The highest levels of MP were “cleared” from the medium by the TET culture which released more extracellular polysacharides. Hetero-aggregation of MP and algal cells was not observed, probably owing to turbulent mixing and cell motility. Abundant bacterial consortia relealed in the cultures (up to 9 × 106 cells ml-1) could be an additional source of exopolymers and serve an agent of MP flocculation and adhesion. Thus, the results obtained highlight the potential for phytoplankton exudates to interact with micro- and nanoplastics, and potentially affect their bioavailability and vertical transport in marine environments.
更多
查看译文
关键词
microplastic particles,adhesion,surfaces
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要