Chrome Extension
WeChat Mini Program
Use on ChatGLM

Daño, producción de semillas y persistencia del hongo endófito Epichloë occultans en plantas de Lolium multiflorum bajo un ataque de herbívoros lepidópteros y contaminación por ozono

Ecología austral(2020)

Cited 3|Views3
No score
Abstract
Plants are expected to face novel challenges as consequence of human-driven global change. Outbreaks of pests and higher incidence of contaminants are increasing. Plants can improve tolerance to stress factors through associations with symbiotic microorganisms. Certain grasses establish persistent and asymptomatic symbioses with Epichloe fungal endophytes, which are known to confer protection against Herbivores and improve plant tolerance to abiotic stress factors. Nonetheless, accumulating evidence suggests the symbiosis outcome is context-dependent. We evaluated the capacity of the endophyte fungus E. occultans in protecting the annual grass Lolium multiflorum against a spontaneous larva attack of the generalist herbivore Agrotis ipsilon under episodic exposure of plants to ozone. Symbiotic and non-symbiotic plants were individually grown outdoors and exposed to ozone at different stages resulting in four treatments: control (plant never exposed to ozone), plant exposed to ozone at the vegetative stage, plant exposed to ozone at reproductive stage, and plant exposed to ozone at both stages. After the last exposure, there was an outbreak of A. ipsilon larvae. We evaluated herbivore damage, seed production per plant, and endophyte transmission to the seeds. Frequency of attacked plants was irrespective of both the endophyte and ozone exposure. However, the damage level per plant was only reduced by the endophyte. Seed production was slightly lower in endophyte-symbiotic plants and not affected by ozone. Interestingly, herbivore damaged and undamaged endophyte-symbiotic plants contributed equally to seed production. However, in plants exposed to ozone once at the vegetative or reproductive stage, endophyte-free undamaged plants had higher seed production than endophyte-free damaged plants. Ozone treatments did not affect the transmission efficiency of endophytes to the seeds. Mean endophyte transmission efficiency per plant was 95%. Medium doses of ozone seem to have undetectable effects on grass-endophyte symbiosis, not affecting the defensive mutualism nor the persistence of the symbiont across generations.
More
Translated text
Key words
simbiosis,mutualismo defensivo,simbiosis pasto-endófito,resistencia,tolerancia,symbiosis,defensive mutualism,grass-endophyte symbiosis,context-dependency,resistance,tolerance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined