Distillation of Squeezing using a pulsed engineered PDC source

arXiv: Quantum Physics(2019)

引用 1|浏览1
暂无评分
摘要
Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the properties of the detection schemes often require the use optical filters in order to combine both detection methods in a common experiment. This limits the efficiency and the overall achievable squeezing of the experiment. In our work, we use photon subtraction to implement the distillation of pulsed squeezed states originating from a genuinely spatially and temporally single-mode parametric down-conversion source in non-linear waveguides. Due to the distillation, we witness an improvement of $0.17~\mathrm{dB}$ from an initial squeezing value of $-1.648 \pm 0.002~\mathrm{dB}$, while achieving a purity of $0.58$, and confirm the non-Gaussianity of the distilled state via the higher-order cumulants. With this, we demonstrate the source's suitability for scalable hybrid quantum network applications with pulsed quantum light.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要