Dispersive analysis of low energy γN→πN process and studies on the N*(890) resonance *

Chinese Physics C(2021)

引用 5|浏览1
暂无评分
摘要
We present a dispersive representation of the \begin{document}$ \gamma N\rightarrow \pi N $\end{document} partial-wave amplitude based on unitarity and analyticity. In this representation, the right-hand-cut contribution responsible for \begin{document}$ \pi N $\end{document} final-state-interaction effects is taken into account via an Omnes formalism with elastic \begin{document}$ \pi N $\end{document} phase shifts as inputs, while the left-hand-cut contribution is estimated by invoking chiral perturbation theory. Numerical fits are performed to pin down the involved subtraction constants. Good fit quality can be achieved with only one free parameter, and the experimental data regarding the multipole amplitude \begin{document}$ E_{0}^+ $\end{document} in the energy region below the \begin{document}$ \Delta(1232) $\end{document} are well described. Furthermore, we extend the \begin{document}$ \gamma N\rightarrow \pi N $\end{document} partial-wave amplitude to the second Riemann sheet to extract the couplings of the \begin{document}$ N^\ast(890) $\end{document} . The modulus of the residue of the multipole amplitude \begin{document}$ E_{0}^+ $\end{document} (S \begin{document}$ {_{11}pE} $\end{document} ) is \begin{document}$ 2.41\;\rm{mfm\cdot GeV^2} $\end{document} , and the partial width of \begin{document}$ N^*(890)\to\gamma N $\end{document} at the pole is approximately \begin{document}$ 0.369 {\rm MeV} $\end{document} , which is almost the same as that of the \begin{document}$ N^*(1535) $\end{document} resonance, indicating that \begin{document}$ N^\ast(890) $\end{document} strongly couples to the \begin{document}$ \pi N $\end{document} system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要