Differentiating early from later diagenesis in a Cretaceous sandstone and petroleum reservoir of the Cedar Mountain Formation, Utah

Rocky Mountain Geology(2021)

引用 1|浏览2
暂无评分
摘要
Previously published anomalous whole-rock stable isotopic values from the Poison Strip Sandstone Member of the Cretaceous Cedar Mountain Formation (CMF) of eastern Utah are of uncertain origins. This study investigated the diagenetic history and the processes responsible for these anomalous data. Accordingly, we integrated photomicroscopic techniques including polarized light microscopy, epifluorescence and cathodoluminescence (CL) imaging, micromilling of stable isotope samples, and fluid-inclusion heating and freezing measurements to this end. The key observations involved the microscopic mapping of calcite cement stratigraphy using CL imaging to permit the analysis of stable isotopes of calcite cements that crystallized during early and late diagenesis. The mapping of calcite cement zones of sufficient submillimeter size to mill out and isolate microgram-sized stable isotope samples enabled this discrimination. Early diagenetic calcite cements have the most positive δ18O values (-10 to -8.5‰ Vienna Pee Dee Belemnite [VPDB]) of all components. The pattern of δ13C and δ18O variation in this early diagenetic cement indicates affinities with early meteoric diagenesis previously documented in published literature on the CFM. The late diagenetic calcite cements yield the most negative δ18O values (-18 to -16‰ VPDB). We interpret the late diagenetic cements to be responsible for the anomalously low whole-rock δ18O values previously reported from the Poison Strip Sandstone Member. Our discoveries of bitumen in late-stage pore fillings and liquid petroleum in the fluid inclusions of late diagenetic calcite cements of the Poison Strip Sandstone Member explain the lower whole-rock organic matter δ13C values and anomalous Δ13C values reported from the unit. Comparatively lower carbonate δ18O and organic δ13C values originally derived from whole-rock analyses of samples from the Poison Strip Sandstone Member resulted from high-temperature basinal diagenesis (hydrothermal circulation and/or petroleum migration), rather than the alternative interpretation of early diagenesis related to a Cretaceous paleoclimatic perturbation. Our results are illustrative of methods to resolve the long-standing geologic problem of discriminating and characterizing products of early vs. late diagenesis in terrigenous clastic sedimentary strata.
更多
查看译文
关键词
cretaceous sandstone,cedar mountain formation,petroleum reservoir,later diagenesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要