Isolation, identification, and characterization of lignocellulose-degrading Geobacillus thermoleovorans from Yellowstone National Park.

Applied and Environmental Microbiology(2021)

引用 2|浏览4
暂无评分
摘要
The microbial degradation of lignocellulose in natural ecosystems presents numerous biotechnological opportunities, including biofuel production from agricultural waste and feedstock biomass. To explore the degradation potential of specific thermophiles, we have identified and characterized extremophilic microorganisms isolated from hot springs environments that are capable of biodegrading lignin and cellulose substrates under thermoalkaline conditions, using a combination of culturing, genomics and metabolomics techniques. Organisms that can use lignin and cellulose as a sole carbon source at 60-75°C were isolated from sediment slurry of thermoalkaline hot springs (71-81°C and pH 8-9) of Yellowstone National Park. Full-length 16S rRNA gene sequencing indicated that these isolates were closely related to Geobacillus thermoleovorans. Interestingly, most of these isolates demonstrated biofilm formation on lignin, a phenotype that is correlated with increased bioconversion. Assessment of metabolite level changes in two Geobacillus isolates from two representative springs were undertaken to characterize the metabolic responses associated with growth on glucose versus lignin carbon source as a function of pH and temperature. Overall, results from this study support that thermoalkaline springs harbor G. thermoleovorans microorganisms with lignocellulosic biomass degradation capabilities and potential downstream biotechnological applications. IMPORTANCE As lignocellulosic biomass represents a major agro-industrial waste and renewable resource, its potential to replace non-renewable petroleum-based products for energy production is considerable. Microbial ligninolytic and cellulolytic enzymes are of high interest in bio-refineries for the valorization of lignocellulosic biomass, as they can withstand the extreme conditions (e.g., high temperature, high pH) required for processing. Of high interest is the ligninolytic potential of specific Geobacillus thermoleovorans isolates to function at a broad range of pH and temperatures, as lignin is the bottleneck in the bioprocessing of lignocellulose. In this study, results obtain from G. thermolerovorans isolates originating from YNP springs are significant as very few microorganisms from alkaline thermal environments have been discovered to have lignin and cellulose biodegrading capabilities, and this work opens new avenues for the biotechnological valorization of lignocellulosic biomass at an industrial scale.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要