On the uncertainty of defocus methods for 3D particle tracking velocimetry

14th International Symposium on Particle Image Velocimetry(2021)

引用 0|浏览1
暂无评分
摘要
Defocus methods have become more and more popular for the estimation of the 3D position of particles in flows (Cierpka and Kahler, 2011; Rossi and K ¨ ahler, 2014). Typically the depth positions of particles are ¨ determined by the defocused particle images using image processing algorithms. As these methods allow the determination of all components of the velocity vector in a volume using only a single optical access and a single camera, they are often used in, but not limited to microfluidics. Since almost no additional equipment is necessary they are low-cost methods that are meanwhile widely applied in different fields. To overcome the ambiguity of perfect optical systems, often a cylindrical lens is introduced in the optical system which enhances the differences of the obtained particle images for different depth positions. However, various methods are emerging and it is difficult for non-experienced users to judge what method might be best suited for a given experimental setup. Therefore, the aim of the presentation is a thorough evaluation of the performance of general advanced methods, including also recently presented neural networks (Franchini and Krevor, 2020; Konig et al., 2020) based on typical images.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要