Development of a topology optimization method for the design of composite lattice ring structures

Eastern-European Journal of Enterprise Technologies(2021)

引用 1|浏览0
暂无评分
摘要
Composite lattice ring structures are known for their lightweight and high efficiency, which have a strong attraction in the aeronautical and aerospace industries. The general manufacturing process for such structures is to use wet filament winding technology. Due to the anisotropic properties of continuous fibers, the filament winding trajectory determines the mechanical properties of the composite lattice ring structures. In this work, a topology optimization method is proposed to generate the efficient filament winding trajectory, which follows the load transfer path of the composite part and can offer higher mechanical strengths. To satisfy the periodicity requirement of the structure, the design space is divided into a prescribed number of identical substructures during the topology optimization process. In order to verify the effectiveness and capability of the proposed approach, the topological design of ring structures with the different number of substructures, the ratio of outer to inner radius and the loading case is investigated. The results reflect that the optimal topology shape strongly depends on the substructure numbers, radius ratio and loading case. Moreover, the compliance of the optimized structures increases with the total number of substructures, while the structural efficiency of the optimized structures decreases with the radius ratio. Finally, taking the specified topological structure as the object, the conceptual design of a robotic filament winding system for manufacturing the composite lattice ring structure is presented. In particular, the forming tooling, integrated deposition system, winding trajectory and manufacturing process are carefully defined, which can provide valuable references for practical production in the future
更多
查看译文
关键词
сomposite lattice ring structures,topology optimization,winding trajectory,robotic filament winding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要